
10/7/2008

1

Parameters

Lecture 5 - A

Object-Oriented Programming

Lecture 5 - A Object-Oriented Programming 2

Agenda

• Why Parameters?

• Message Specification

• Smart Objects

• Sending and Receiving Parameters

• Actual and Formal Parameter

• CircleCalculator Example

• Formal Parameter

• Actual and Formal Parameters

• Signature

• References in Java

• Parameters and Association

• The Receiver & The Sender syntax

• Types of Methods Revisited

• Return Types

• Accessor and Mutator Methods

• Readings

10/7/2008

2

Lecture 5 - A Object-Oriented Programming 3

Why Parameters (1)

• The world of objects is all about
cooperating objects.

• In order to cooperate the objects have to
send messages to each other.

• To communicate, objects send messages to
each other.

• How do we make messages specific?

• Answer: Parameters

Lecture 5 - A Object-Oriented Programming 4

Why Parameters (2)

• Objects have two types of relationship

– Containment

– Association

• Objects contain other objects and have knowledge
of these objects.

• However, the contained objects does not have the
knowledge of its container.

• How do we provide such knowledge?

• Answer: Parameters

10/7/2008

3

Lecture 5 - A Object-Oriented Programming 5

Making Messages Specific
• OOP_Car needs a paint job!

• Let’s say we want to give OOP_Car the capability of being painted
different colors

• One solution:
– add a method to OOP_Car for each color we want to paint with

public void setRed();

public void setBlue();

public void setTeal();

public void setMauve();

...

• Not very elegant to write all these methods

• Much more efficient to write one setColor method in class OOP_Car
in which we could specify the color that we want to paint with

Lecture 5 - A Object-Oriented Programming 6

Making Smart Objects

• OOP_Car is going for a drive!

• It’s time to associate OOP_Car with the City it’s driving in
– This way it can call methods on class City to ask where schools and parks are

located

• Remember, City contains OOP_Car
– City has an instance variable of class OOP_Car

– This means City can call methods on this instance

• But containment relationship is not symmetric
– OOP_Car can’t automatically call methods on City (it doesn’t know about the

city)

• So how can we enable OOP_Car to know its container, City, so it can call
methods on City?

• Need to associate a City instance with a OOP_Car instance in order for a
OOP_Car to call methods on City

• How do we associate two objects?

10/7/2008

4

Lecture 5 - A Object-Oriented Programming 7

Sending and Receiving Parameters

• Mathematical Analogy

– a function in math is like a method that receives

one or more parameters and computes a result

– “send” the function a specific value of the

parameter

f(x) = x2 + 2x + 52

specific value receiving function

Lecture 5 - A Object-Oriented Programming 8

Actual and Formal Parameter

• x is a Formal parameter

– formal parameters are “dummy” variables that represent the type
of object that will be passed in when the method is called

– have no value of their own; take on value of parameters passed in
when method is called

– placeholders, like x in x2 + 2x + 5

• 2 is an Actual parameter
– actual parameters are “actual” instances sent when calling method

– sender passes a specific value/instance with method call to receiver

10/7/2008

5

Lecture 5 - A Object-Oriented Programming 9

CircleCalculator
public class CircleCalculator{

private final double PI ;

private double radius;

public CircleCalculator() //Constructor of the CircleCalculator Class

{

PI = 3.14159;

radius = 40.0;

}

public void printCircumfarence()

{

System.out.println(2*PI*radius);

return;

}

public void printArea()

{

System.out.println(PI*radius*radius);

return;

}

}

radius is fixed in this class

Lets use parameters and make radius more specific

Lecture 5 - A Object-Oriented Programming 10

Improved CircleCalculator

public class CircleCalculator{

private final double PI ;

public CircleCalculator() //Constructor of the
CircleCalculator Class

{

PI = 3.14159;

}

public void printCircumfarence(int radius)

{

System.out.println(2*PI*radius);

return;

}

public void printArea(int radius)

{

System.out.println(PI*radius*radius);

return;

}

}

radius is used as

a parameter

10/7/2008

6

Lecture 5 - A Object-Oriented Programming 11

Formal Parameter

public void printCircumfarence(int radius)

{

System.out.println(2*PI*radius);

return;

}

public void printArea(int radius)

{

System.out.println(PI*radius*radius);

return;

}

• The parameter “radius” is the formal parameter of these two
methods. It is given a type “int”.

• In the method it will behave as a local variable with supplied
values.

Formal Parameters

Lecture 5 - A Object-Oriented Programming 12

Using CircleCalculator

CircleCalculator circleCalculator = new CircleCalculator();

circleCalculator.printCircumfarence(45);

Instantiating CircleCalculator Object

CircleCalculator Object Sending Message Actual Parameter

10/7/2008

7

Lecture 5 - A Object-Oriented Programming 13

Actual and Formal Parameters

• One-to-one correspondence between formal and actual parameters
– order, type (class) of instances, and number of parameters sent must match

order, type, and number declared in method!

circleCalculator.printCircumfarence(45);
• sends one parameter of type int

• which matches:

public void printCircumfarence(int radius)
• expects one parameter of type int

• Name of formal parameter does not have to be the same as the
corresponding actual parameter
– receiver cannot know what specific instances will be passed to it, yet it

must know how to refer to it
• receiver uses a dummy name to represent the parameter

– sender may send different actual parameters
• Any value falling in the range of int could be sent

Lecture 5 - A Object-Oriented Programming 14

Signature

A method’s signature is composed of its…

• Identifier (name)

• Classes (types) of its parameters

• order of its parameters

• Like a person’s signature, a method’s signature must be unique.

• Creating two methods in one class with the same signature will cause
an error

10/7/2008

8

Lecture 5 - A Object-Oriented Programming 15

More on References in Java

CircleCalculator circleCalculator = new CircleCalculator();

What is circleCalculator?

circleCalculator is not an object itself. It is a reference to the location where the object is

created by Java.

Java never allows allow access to objects directly. It only gives a reference to access the

instantiated objects.

Lecture 5 - A Object-Oriented Programming 16

References in Java

• A reference is just a pointer to a location in memory
– a version of an address people can understand

– it’s easier to keep track of a name than some weird …thing (like
0xeff8a9f4)

– holds a memory address where instance is stored

– Java also has primitives, which are not objects and do not have
pointers

reference to

instance 1

reference to

instance 2

reference to

instance 3

10/7/2008

9

Lecture 5 - A Object-Oriented Programming 17

Parameters and Association

• Let’s use what we’ve learned about parameters to
enable a OOP_Car to know about its City --
called association
– OOP_Car can store a reference to its City so that it

can send messages to it

• Usually associations are done in the constructor
– don’t forget that constructors are methods, too

– they can receive parameters just like any other method

Lecture 5 - A Object-Oriented Programming 18

Syntax: The Receiver

public class OOP_Car {

private City _city;

public OOP_Car(City myCity) {

_city = myCity;

}

}

So whoever instantiates a OOP_Car is expected to pass in a City to the

OOP_Car’s constructor for the OOP_Car to be associated with.

The instance City will be referenced by the formal parameter name myCity

whose value is then assigned to the instance variable _city. Now the

OOP_Car can call any of City’s methods on _city.

10/7/2008

10

Lecture 5 - A Object-Oriented Programming 19

Syntax: The Sender

public class City {

private OOP_Car _15mobile;

public City() {

_15mobile = new OOP_Car(this);

}

}

In this case, the “whoever” mentioned on the previous slide is the City itself.

It passes the OOP_Car a reference to itself by using the reserved word this.

Now _15mobile is associated with “this” instance of City .

Lecture 5 - A Object-Oriented Programming 20

Syntax for the Receiver

• Syntax for class OOP_Car

public class OOP_Car {

private City _city;

// _city is a variable representing the

// City that this OOP_Car is driving in

// OOP_Car constructor

public OOP_Car(City myCity) {

_city = myCity;

}

}

– standard constructor that receives a parameter

– assigns the parameter passed in, myCity, to the instance variable _city

– OOP_Car now knows about myCity

10/7/2008

11

Lecture 5 - A Object-Oriented Programming 21

Syntax for the Sender

• Syntax for class City

_15mobile = new OOP_Car(this);

• Remember this
– shorthand for “this instance”, i.e., instance where execution is currently

taking place

• Constructor for OOP_Car needs a City
– we need to pass an instance of the City

class to the constructor for OOP_Car

– where can we find an instance of City?

– since we’re in the City class constructor

(i.e., execution is taking place inside the City

class) we can use this as our instance of City

Lecture 5 - A Object-Oriented Programming 22

Types of Methods Revisited

• An object’s method or capabilities

– constructors: establish initial state of object’s properties

– commands: change object’s properties

– queries: provide answers based on object’s properties

• We have seen the methods of first two types.

• Let’s what we need for the methods of the third

type.

10/7/2008

12

Lecture 5 - A Object-Oriented Programming 23

Return Types

public double calculateArea(int radius)

{

return PI*radius*radius;

}

• We are passing a formal parameter of type int.

• The method returns the area of the circle of type double.

Specifies the Return Value Type

Calculates and returns the value in double

Lecture 5 - A Object-Oriented Programming 24

• When we call the method calculateArea() we need a
local variable to get the value back from this method.

• The type of the local variable must match the return type of the
method.

double area; //Declaring a local variable namely area

CircleCalculator circleCalculator = new
CircleCalculator();

//Instantiating an object of CircleCalculator class

area = circleCalculator.calculateArea(40);

Return Types (2)

Must of an int typeMust of a double type

10/7/2008

13

Lecture 5 - A Object-Oriented Programming 25

Accessor and Mutator Methods

• Accessor and Mutator methods are simple helper methods
used to “get” or “set” some property of an object

• These methods are very simple but illustrate the concepts
of parameters and return types

• Mutator Methods:
– “set” methods

– use parameters but generally do not return anything (return void)

– exist primarily to change the value of a particular private instance
variable (property) in a safe way

Lecture 5 - A Object-Oriented Programming 26

Accessor and Mutator Methods

• Accessor Methods:
– “get” methods

– use return types but generally do not take parameters

– exist primarily to return information to the calling method

– names usually start with get (getColor, getSize, getCity)

– Examples, respectively:

• method that returns the color of an object

• method that returns the size of an object

• method that returns the city that a CP07Mobile drives in

• Accessors and Mutators usually occur in pairs

10/7/2008

14

Lecture 5 - A Object-Oriented Programming 27

Readings

Book Name: Object Oriented Programming in Java – A

Graphical Approach

Author: Kathryn E. Sanders & Andries van Dam

Content: Chapter 2

Lecture 5 - A Object-Oriented Programming 28

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

